Home
Class 12
MATHS
The sum of the infinite terms of the ser...

The sum of the infinite terms of the series `cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/(40)+` is equal to a.`tan^(-1)(1)` b. `tan^(-1)\ \ (2)` c.`tan^(-1)2\ ` d. `(3pi)/4-tan^(-1)3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

Sum to infinite terms the series: cot^-1(1^2+ 3/4)+cot^-1 (2^2+3/4)+cot^-1 (3^2+3/4)+….

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

The sum to infinite terms of the series tan^(-1)((2)/(1-1^(2)+1^(4)))+tan^(-1)((4)/(1-2^(2)+2^(4)))+tan^(-1)((6)/(1-3^(2)+3^(4)))+

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

cot[csc^(-1)(5/3) + tan^(-1)(2/3)] = ....