Home
Class 12
MATHS
Let in a triangle ABC sides opposite to ...

Let in a triangle ABC sides opposite to vertices A B&C be a, b, & c then there exists a triangle satisfying
(A) `tan A+tan B+tan C=0`
(B) `(sin A)/(2)=(sin B)/(3)=(sin C)/(7)`
(C) `(a+b)^(2)=c^(2)+ab`
(D) Not possible

Promotional Banner

Similar Questions

Explore conceptually related problems

Let in a triangle ABC sides opposite to vertices A B&C be a b&c then there exists a triangle satisfying (1) tan A+tan B+tan C=0 (2) (sin A)/(2)=(sin B)/(3)=(sin C)/(7) (3) (a+b)^(2)=c^(2)+ab (4) Not possible

In a Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), then a^(2),b^(2),c^(2) are in

In /_ABC, if tan A:tan B:tan C=1:2:3, then sin A:sin B:sin C=?

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

In a Delta ABC if tan B=(2sin A sin C)/(sin(A+C)) then tan A,tan B,tan C are in

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then

If A+B+C=pi and sin(A+(C)/(2))=k sin((C)/(2)) then (tan A)/(2)(tan B)/(2) is