Home
Class 12
MATHS
18.Let I(1)=int(sec^(2)z)^(2-tan^(2)z)xf...

18.Let `I_(1)=int_(sec^(2)z)^(2-tan^(2)z)xf(x(3-x))dx `and let `I_(2)=int_(sec^(2)z)^(2-tan^(2)z)f(x(3-x))dx` where` ' f'` is a continuous function and '` z'` is any real number then `(I_(1))/(I_(2))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(0)^(1)(5^(x))/(x+1)dx and I_(2)=int_(0)^(1)(x^(2))/(5^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2))=

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

(i) int(sec x-tan x)^(2)dx

If f(x) =(e^(2))/(1+e^(x)),I_(1)=int_(f(-a))^(f(a)) xg{x(1-x)}dx and I_(2)=int_(f(-a))^(-f(-a)) g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

If I_(1)=int_(0)^( pi)xf(sin^(3)x+cos^(2)x)dx and I_(2)=int_(0)^((pi)/(2))f(sin^(3)x+cos^(2)x)dx, then relate I_(1) and I_(2)

Evaluate: (i) int(tan x sec^(2)x)/((a+b tan^(2)x))dx (ii) int sec^(3)x tan xdx

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to