Home
Class 12
MATHS
If F(x)=int1^x(lnt)/(1+t+t^2)dt then F...

If `F(x)=int_1^x(lnt)/(1+t+t^2)dt` then `F(x)=-F(1/x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

f(x)=int_1^xlogt/(1+t+t^2)dt (xge1) then prove that f(x) =f(1/x)

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .