Home
Class 12
MATHS
Prove that int0^(pi/2) sin 2x log tan x ...

Prove that `int_0^(pi/2) sin 2x log tan x \ dx = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^(pi//2) sin 2x log tanx dx=0

int_0^(pi/2)sin2x log(tanx)dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_(0)^(pi//2) sin 2 x.ln(tan x)dx

Prove that int_0^(pi//8) log |1 + tan 2x|\ dx = pi/16 log_e 2.

int_(0)^((pi)/(2))sin2x*log(tan x)dx=