Home
Class 12
MATHS
tan^(-1)(sqrt(1+x^(2))-1)/(x),x!=0...

tan^(-1)(sqrt(1+x^(2))-1)/(x),x!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the simplest value of f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)),x in R-{0}

If tan^(-1)(sqrt(1+x^(2)-1))/(x)=4^(0) then x=tan2^(0)(b)x=tan4^(0)x=tan(1)/(4)^(0)(d)x=tan8^(0)

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

Write the function tan^(-1)((sqrt(1+x^(2))-1)/x)x ne 0 , in the simplest form.

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Write the following functions in the simplest form : tan^(-1)((sqrt(1+x^2)-1)/x), x ne 0