Home
Class 12
MATHS
[" Question "8],[[" (a) Prove that: "sin...

[" Question "8],[[" (a) Prove that: "sin^(-1)(x)/(sqrt(1+x^(2)))+cos^(-1)(x+1)/(sqrt(x^(2)+2x+2)),=tan^(-1)(x^(2)+x+1)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .