Home
Class 14
MATHS
y=tan^(-1)((e^(2x)+1)/(e^(2x)-1))" at "(...

y=tan^(-1)((e^(2x)+1)/(e^(2x)-1))" at "(dy)/(dx)" sifi "(3)/(321)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=

If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)) , prove that : dy/dx=-(2e^(2x))/(1+e^(4x)) .

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

If y = tan^-1((e^(2x) +1)/(e^(2x) -1)) , prove that : dy/dx =-(2e^(2x))/(1+e^4x)

If y = "log cos "( tan^(-1)((e^x - e^(-x))/(2))) , then (dy)/(dx) =

If y =tan^(-1)(sinsqrt(x))+ "cosec"^(-1)(e^(2x+1)), " then " (dy)/(dx)=

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

y=tan^(-1)x+5log x-2e^(3x) then find (dy)/(dx)