Home
Class 12
MATHS
Given Sn=sum(k=1)^n k/((2n-2k+1)(2n-k+1...

Given `S_n=sum_(k=1)^n k/((2n-2k+1)(2n-k+1)) and T_n=sum_(k=1)^n1/k ,` then `(T_n)/(S_n)` is equal to`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Let S_n=sum_(k=0)^n n/(n^2+kn+k^2) and T_n=sum_(k=0)^(n-1) n/(n^2+kn+k^2) for n=1,2,3... then (a) S_n lt pi/3sqrt(3) b) S_n gt pi/3sqrt(3) (c) T_n lt pi/3sqrt(3) (d) T_n gt pi/3sqrt(3)

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

S_(n)=sum_(k=1)^(n)(k^(2)+n^(2))/(n^(3)) and T_(n)=sum_(k=0)^(n-1)(k^(2)+n^(2))/(n^(3)),n in N then

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to:

Let S_(n)=sum_(k=1)^(n) (n)/(n^(2)+nk+k^(2)) and T_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+nk+k^(2)) for n= 1,2,3..., then

Suppose m and n are positive integers and let S=sum_(k=0)^(n)(-1)^(k)(1)/(k+m+1)(nC_(k)) and T=sum_(k=0)^(m)(-1)^(k)1(k+n+1)(mC_(k)) then S-T is equal to