Home
Class 12
MATHS
Simplify: (m^8p^7r^(12))/(m^3 r^9p) xx p...

Simplify: `(m^8p^7r^(12))/(m^3 r^9p) xx p^2 r^3 m^4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((m^8p^7r^{12})/(m^3 r^9p) \times p^2 r^3 m^4\), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression clearly: \[ \frac{m^8 p^7 r^{12}}{m^3 r^9 p} \times p^2 r^3 m^4 \] ### Step 2: Combine the fractions We can combine the multiplication and division into a single fraction: \[ = \frac{m^8 p^7 r^{12} \cdot p^2 r^3 m^4}{m^3 r^9 p} \] ### Step 3: Simplify the numerator Now, we simplify the numerator: \[ = \frac{m^8 m^4 p^7 p^2 r^{12} r^3}{m^3 r^9 p} \] Using the property \(x^a \cdot x^b = x^{a+b}\), we get: \[ = \frac{m^{8+4} p^{7+2} r^{12+3}}{m^3 r^9 p} \] This simplifies to: \[ = \frac{m^{12} p^9 r^{15}}{m^3 r^9 p} \] ### Step 4: Simplify the fraction Now we will simplify the fraction using the property \(\frac{x^a}{x^b} = x^{a-b}\): \[ = m^{12-3} p^{9-1} r^{15-9} \] This gives us: \[ = m^9 p^8 r^6 \] ### Step 5: Final result Thus, the simplified expression is: \[ \boxed{m^9 p^8 r^6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (16 m^3y^2)/(4m^2y) (2) (32 m^2n^3p^2)/(4m n p)

Simplify: 2m-3n+5p+2m+n-2p-3m-4n+p

Simplify the following - 7m^(2)n^(3)p div 5/2 mn^(2)p

(3p^(2)qr^(3)) xx (- 4p^(3)q^(2)r^(2))xx (7pq^(2)r) is equal to

Factorize : p^3(q-r)^3+q^3(r-p)^3+r^3(p-q)^3

Factorize : p^3(q-r)^3+q^3(r-p)^3+r^3(p-q)^3

Find each of the products: (4/3p q^2)xx(-1/4p^2r)xx\ (16 p^2q^2r^2)

sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]= (2^(m n)-1)/(2^(m n)(2^n-1))

Find thevalue of 'r': (i) .^(12)P_(r) = 1320 (ii) 5.^(4)P_(r) = 6.^(5)P_(r-1)

A satellite of mass m orbits the earth in an elliptical orbit having aphelion distance r_(a) and perihelion distance r_(p) . The period of the orbit is T. The semi-major and semi-minor axes of the ellipse are (r_(a) + r_(p))/(2) and sqrt(r_(p)r_(a)) respectively. The angular momentum of the satellite is: (A) (2m pi (r_(B)+r_(p)) sqrt(r_(a) r_(p)))/T (B) (m pi (r_(a)+r_(p)) sqrt(r_(a) r_(p)))/(2T) (C) (m pi (r_(a)+r_(p)) sqrt(r_(a)r_(p)))/(4T) (D) (mpi (r_(a)+r_(p)) sqrt(r_(a)r_(p)))/T