Home
Class 12
MATHS
sqrt(20a) xx sqrt(5a) , assuming a is po...

`sqrt(20a) xx sqrt(5a)` , assuming a is positive.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{20a} \times \sqrt{5a} \), we can follow these steps: ### Step 1: Combine the square roots Using the property of square roots that states \( \sqrt{x} \times \sqrt{y} = \sqrt{x \times y} \), we can combine the two square roots: \[ \sqrt{20a} \times \sqrt{5a} = \sqrt{(20a) \times (5a)} \] ### Step 2: Multiply the expressions inside the square root Now, we will multiply the expressions inside the square root: \[ (20a) \times (5a) = 20 \times 5 \times a \times a = 100a^2 \] ### Step 3: Take the square root Next, we take the square root of the result from Step 2: \[ \sqrt{100a^2} \] ### Step 4: Simplify the square root We can simplify the square root: \[ \sqrt{100} \times \sqrt{a^2} = 10 \times a \] ### Final Answer Thus, the final result is: \[ 10a \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt3 xx sqrt3

4sqrt(6)xx3sqrt(24) = :-

(3+sqrt5)^2 xx (3-sqrt5)^2 = ?

sqrt(x^2 y^3 + 3x^2y^3) , assuming x and y are positive

sqrt(-5x^(8))- sqrt(-20x^(8)) + sqrt(-45x^(8)) , where x is a positive real number

sqrt(x+5)+sqrt(20-x)=7

In a triangle ABC sqrt(a)+sqrt(b)-sqrt(c) is (A) always positive (B) always negative (C) positive only when c is smallest (D) none of these

2/sqrt6 xx 3/sqrt6 + 2/6

Write whether (2sqrt(45)+3sqrt(20))/(2sqrt(5)) on simplification gives a rational or an irrational number.

Solve for x. x=sqrt(20)xxsqrt5