Home
Class 12
MATHS
10sqrt(12) -: 2sqrt(3)...

`10sqrt(12) -: 2sqrt(3)`

A

5

B

10

C

40

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{10\sqrt{12}}{2\sqrt{3}} \), we can follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ \frac{10\sqrt{12}}{2\sqrt{3}} \] ### Step 2: Separate the constants and the square roots We can rewrite the expression by separating the constants (10 and 2) from the square roots: \[ = \frac{10}{2} \cdot \frac{\sqrt{12}}{\sqrt{3}} \] ### Step 3: Simplify the constants Now, simplify \( \frac{10}{2} \): \[ = 5 \cdot \frac{\sqrt{12}}{\sqrt{3}} \] ### Step 4: Simplify the square roots Next, we can simplify \( \frac{\sqrt{12}}{\sqrt{3}} \) using the property of square roots: \[ = 5 \cdot \sqrt{\frac{12}{3}} \] Calculating \( \frac{12}{3} \): \[ = 5 \cdot \sqrt{4} \] ### Step 5: Calculate the square root Now, we know that \( \sqrt{4} = 2 \): \[ = 5 \cdot 2 \] ### Step 6: Final multiplication Finally, multiply the constants: \[ = 10 \] Thus, the final answer is: \[ \boxed{10} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx"i s" (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx is (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)

If hata=hati+2hatj+3hatk, hatb=hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk) then length of vecb is equal to (A) sqrt(12) (B) 2sqrt(12) (C) 2sqrt(14) (D) 3sqrt(12)

If vec a and vec b are any two vectors of magnitudes 2 and 3, respectively, such that |2( vec axx vec b)|+|3( vec a. vec b)|=k , then the maximum value of k is a. sqrt(13) b. 2sqrt(13) c. 6sqrt(13) d. 10sqrt(13)

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

The distance of the point (1, 2, 3) from the plane x+y-z=5 measured along the straight line x=y=z is 5sqrt(3) (2) 10sqrt(3) (3) 3sqrt(10) 3sqrt(5) (5) 2sqrt(5)

Find the 5th term of the progression 1,((sqrt(2)-1))/(2sqrt(3)),\ ((3-2sqrt(2))/(12)),\ ((5sqrt(2)-7)/(24sqrt(3))),\ ddot

Use the properties of proportionality to solve : (sqrt(12x+1)+sqrt(2x-3))/(sqrt(12x+1)-sqrt(2x-3))=3/2

The area bounded between the parabolas x^2=y/4"and"x^2=9y and the straight line y""=""2 is (1) 20sqrt(2) (2) (10sqrt(2))/3 (3) (20sqrt(2))/3 (4) 10sqrt(2)