Home
Class 12
MATHS
sqrt(x^2 y^3 + 3x^2y^3), assuming x and ...

`sqrt(x^2 y^3 + 3x^2y^3)`, assuming x and y are positive

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{x^2 y^3 + 3x^2y^3} \), we can follow these steps: ### Step 1: Factor out the common term We notice that both terms inside the square root share a common factor of \( x^2y^3 \). So, we can factor this out: \[ \sqrt{x^2 y^3 + 3x^2 y^3} = \sqrt{x^2 y^3 (1 + 3)} \] ### Step 2: Simplify the expression inside the square root Now we simplify the expression inside the square root: \[ \sqrt{x^2 y^3 (1 + 3)} = \sqrt{x^2 y^3 \cdot 4} \] ### Step 3: Break down the square root Next, we can separate the square root of the product: \[ \sqrt{x^2 y^3 \cdot 4} = \sqrt{x^2} \cdot \sqrt{y^3} \cdot \sqrt{4} \] ### Step 4: Calculate the square roots Now we calculate the square roots of each component: \[ \sqrt{x^2} = x, \quad \sqrt{y^3} = y^{3/2} = y \cdot \sqrt{y}, \quad \text{and } \sqrt{4} = 2 \] ### Step 5: Combine the results Putting it all together, we have: \[ \sqrt{x^2 y^3 + 3x^2y^3} = x \cdot (y \cdot \sqrt{y}) \cdot 2 = 2xy\sqrt{y} \] Thus, the final answer is: \[ \sqrt{x^2 y^3 + 3x^2y^3} = 2xy\sqrt{y} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Assuming that x , y are positive real numbers, simplify each of the following: (i) sqrt(x^(-2)y^3) (ii) (x^(-2)doty^(-1/2))^2 (iii) (sqrt(x^(-3)))^5

Assuming that x , y , z are positive real numbers, simplify each of the following: (i) (sqrt(x))^(-2/3)\ \ sqrt(y^4)\ -:\ sqrt(x y^(-1/2))

Assuming that x ,\ y ,\ z are positive real numbers, simplify each of the following: (i)\ (sqrt(x^(-3)))^5 (ii) sqrt(x^-2y^(3)) (iii) (x^(-2/3)\ y^(-1/2\ ))^2

Assuming that x , y , z are positive real numbers, simplify each of the following: (i)\root(3)(x y^2) \ -:\x^2y (ii)\ root(4)root(3)(x^2)

The equation of line passing through (2,-3) and making an angle of 120^(@) with positive direction of x- axis is (i) sqrt(3)x-y+3-2sqrt(3)=0 (ii) sqrt(3)x+y-3-2sqrt(3)=0 (iii) sqrt(3)x+y+3-2sqrt(3)=0 (iv) sqrt(3)x+y+3+2sqrt(3)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If 3x + y i= x + 2y , then 2x - y =

Assuming that x ,\ y ,\ z are positive real numbers, simplify each of the following: (sqrt(x))^(-2/3)\ sqrt(y^4)-:\ sqrt(x y^(-1/2)) (ii) root(5)(243\ x^(10)y^5z^(10))

Assuming that x , y , z are positive real numbers, simplify each of the following: (i) (x^(-2/3)\ \ y^(-1/2))^2