Home
Class 12
MATHS
If f(x) = 2x^4 - x^2, what is the value ...

If `f(x) = 2x^4 - x^2`, what is the value of `f(2sqrt(3))`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(2\sqrt{3}) \) for the function \( f(x) = 2x^4 - x^2 \), we will follow these steps: ### Step 1: Substitute \( 2\sqrt{3} \) into the function We start by substituting \( x = 2\sqrt{3} \) into the function: \[ f(2\sqrt{3}) = 2(2\sqrt{3})^4 - (2\sqrt{3})^2 \] ### Step 2: Calculate \( (2\sqrt{3})^4 \) Now we calculate \( (2\sqrt{3})^4 \): \[ (2\sqrt{3})^4 = (2^4)(\sqrt{3})^4 = 16 \cdot 9 = 144 \] ### Step 3: Calculate \( (2\sqrt{3})^2 \) Next, we calculate \( (2\sqrt{3})^2 \): \[ (2\sqrt{3})^2 = 2^2 \cdot (\sqrt{3})^2 = 4 \cdot 3 = 12 \] ### Step 4: Substitute back into the function Now we substitute these values back into the function: \[ f(2\sqrt{3}) = 2 \cdot 144 - 12 \] ### Step 5: Perform the multiplication Calculate \( 2 \cdot 144 \): \[ 2 \cdot 144 = 288 \] ### Step 6: Final calculation Now, we subtract \( 12 \) from \( 288 \): \[ 288 - 12 = 276 \] ### Conclusion Thus, the value of \( f(2\sqrt{3}) \) is: \[ \boxed{276} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)+6 , what is the value of f(3)?

If f (x) =2x ^(2) -5x +7, what is the value of f (8) -f (3) ?

Given functions f(x) = 2x + 1 and g(x) = x^(2) - 4 , what is the value of f(g(-3)) ?

If f(x)=|x^(2)+2x+1| ,what is the value of f(-4)?

If f(x)=2x^(3) and g(x)=3x , what is the value of g(f(-2))-f(g(-2)) ?

Given that f(x) = 3x + 7 and g(x) = (x^2)/(2) , what is the value of f(g(4)) ?

Given that f(x) = 4 x ^2 and g (x) =3-(x)/(2) , what is the value of f(g(4)) ?

If f(x)=5x^2 -3 and f(x+a)=5x^2 + 30x + 42 , what is the value of a ?

f(x)=x+4 g(x)=6-x^(2) What is the maximum value of g(f(x)) ?