Home
Class 12
MATHS
If z > 0? (1) (z + 1)(z)(z - 1) < 0 ...

If `z > 0`?
(1) `(z + 1)(z)(z - 1) < 0`
(2) `|z| < 1`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

z_1a n dz_2 are two complex numbers satisfying i|z_1|^2z_2-|z_2|^2z_1=z_1-i z_2dot Then which of the following is/are correct? R e((z_1)/(z_2))=0 (b) I m((z_1)/(z_2))=0 z_1( z )_2+( z )_1z_2=0 (d) |z_1||z_2|=1or|z_1|=|z_2|

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

Minimum value of |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 is ________.

State true or false for the following. Let z_(1) " and " z_(2) be two complex numbers such that |z_(2) + z_(2)| = |z_(1) | + |z_(2)| , then arg (z_(1) - z_(2)) = 0

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

Which of the following is correct for any tow complex numbers z_1a n dz_2? |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|

Which of the following is correct for any tow complex numbers z_1a n dz_2? (a) |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)