Home
Class 12
MATHS
Which of the following is equal to (6 + ...

Which of the following is equal to `(6 + sqrt(5))/(2 - sqrt(5))`?

A

17

B

`-17`

C

`17 + 8sqrt(5)`

D

`-(17 + 8sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((6 + \sqrt{5})/(2 - \sqrt{5})\), we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify the expression, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \(2 - \sqrt{5}\) is \(2 + \sqrt{5}\). \[ \frac{6 + \sqrt{5}}{2 - \sqrt{5}} \cdot \frac{2 + \sqrt{5}}{2 + \sqrt{5}} = \frac{(6 + \sqrt{5})(2 + \sqrt{5})}{(2 - \sqrt{5})(2 + \sqrt{5})} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator using the difference of squares formula: \[ (2 - \sqrt{5})(2 + \sqrt{5}) = 2^2 - (\sqrt{5})^2 = 4 - 5 = -1 \] ### Step 3: Expand the Numerator Next, we expand the numerator: \[ (6 + \sqrt{5})(2 + \sqrt{5}) = 6 \cdot 2 + 6 \cdot \sqrt{5} + \sqrt{5} \cdot 2 + \sqrt{5} \cdot \sqrt{5} \] Calculating each term: - \(6 \cdot 2 = 12\) - \(6 \cdot \sqrt{5} = 6\sqrt{5}\) - \(\sqrt{5} \cdot 2 = 2\sqrt{5}\) - \(\sqrt{5} \cdot \sqrt{5} = 5\) Adding these together: \[ 12 + 6\sqrt{5} + 2\sqrt{5} + 5 = 12 + 5 + (6\sqrt{5} + 2\sqrt{5}) = 17 + 8\sqrt{5} \] ### Step 4: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{17 + 8\sqrt{5}}{-1} = - (17 + 8\sqrt{5}) = -17 - 8\sqrt{5} \] ### Final Answer Thus, the expression \((6 + \sqrt{5})/(2 - \sqrt{5})\) simplifies to: \[ - (17 + 8\sqrt{5}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))=a+b\ sqrt(15)

Which of the following complex numbers is equal to (5 + 12i) − ( 9i^2 − 6i), for i = sqrt(−1) ?

2sqrt5 - sqrt5 = sqrt5

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)+sqrt(2))^2 (iv) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

Rationalise the denominator of each of the following (i) (sqrt(3)+\ 1)/(sqrt(2)) (ii) (sqrt(2)+\ sqrt(5))/(sqrt(3)) (iii) (3sqrt(2))/(sqrt(5))

Simplify each of the following : (i) 3/(5-sqrt(3))+2/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (iii) (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

Which of the following is the value of sin 27^0-cos 27^0? (a) -(sqrt(3-sqrt(5)))/2 (b) (sqrt(5-sqrt(5)))/2 (c) -(sqrt(5)-1)/(2sqrt(2)) (d) none of these

Factorize each of the following expressions : (i) 4sqrt(3)x^2+5x-2sqrt(3) , (ii) 5sqrt(5)x^2+30 x+8sqrt(5)

Multiply 6sqrt(5) by 2sqrt(5) .

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))