Home
Class 12
MATHS
Show that int0^a f(x)g(x)dx=2 int0^a f(x...

Show that `int_0^a f(x)g(x)dx=2 int_0^a f(x)dx` if f and g defined as `f(x) = f(a-x)`and `g(x) +g(a-x)= 4`

Text Solution

AI Generated Solution

To prove that \[ \int_0^a f(x) g(x) \, dx = 2 \int_0^a f(x) \, dx \] given that \( f(x) = f(a - x) \) and \( g(x) + g(a - x) = 4 \), we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

int{f(x)+-g(x)}dx=int f(x)dx+-int g(x)dx

If int f(x)dx=g(x) then int f^(-1)(x)dx is

(A) For each of the following function f(x), verify that: int_0^2 f(x) dx=int_0^1 f(x) dx+int_1^2 f(x) dx: (i) f(x)=x+2 (ii) f(x)= x^2+2 (iii) f(x)= e^x (B) For each of the following pairs of function f(x) and g(x) , verify that: int_0^1 [f(x)+g(x)]dx=int_0^1 f(x) dx+int_0^1 g(x) dx: (i) f(x)=1,g(x) = x^2 (ii) f(x)=e^x, g(x)=1

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

Evaluate: if int f(x)dx=g(x), then int f^(-1)(x)dx

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=