Home
Class 12
MATHS
If int(pidx)/(2(cos^(- 1)x)^2sqrt(1-x^2)...

If `int(pidx)/(2(cos^(- 1)x)^2sqrt(1-x^2))=(f(x))/(g(x))+c` where f(x) and g(x) are non constant function of x, then the value of `lim_(x->1/sqrt2)[(f(x))/(g(x))]` is (where [*] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

f(x)=cos^(-1)sqrt(log_([x])((|x|)/(x))) where [.1 denotes the greatest integer function

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is