Home
Class 11
MATHS
" Let "f'(x)=sin(x^(2))" and "y=f(x^(2)+...

" Let "f'(x)=sin(x^(2))" and "y=f(x^(2)+1)" then "(dy)/(dx)" at "x=1" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f'(x)=sin x^2 and y=f(x^2+1) then dy/dx =____

If f^1(x)=sqrt(2x^(2)-1) and y=f(x^2) then dy/dx at x = 1 is

If f(y)=f(x^(2)+2) and f'(3)=5 , then (dy)/(dx) at x=1 is :