Home
Class 9
MATHS
a^(3)+b^(3)+c^(3)-3abc=k(a+b+c)[(a-b)^(2...

`a^(3)+b^(3)+c^(3)-3abc=k(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]`, then k=

A

0

B

`(1)/(2)`

C

`-(1)/(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXAMPLES (Short answer type questions)|34 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.1|30 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.4 (Long -answer type questions )|11 Videos
  • DISTANCE FORMULAS

    CALCUTTA BOOK HOUSE|Exercise Long answer|11 Videos
  • FREQUENCY DISTRIBUTIONS OF GROUPED DATA

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1 (LONG TYPE ANSWER QUESTION)|14 Videos

Similar Questions

Explore conceptually related problems

If a=-1,b=2,c=3," then"(a^(3)+b^(3)+c^(3)-3abc)/((a-b)^(2)+(b-c)^(2)+(c-a)^(2))=

(3a-2b)^(3)+(2b-5c)^(3)+(5c-3a)^(3)

Find the value of a^(3)+b^(3)+c^(3)-3abc, when a + b + c = 5 , a^(2) + b^(2) + c^(2) = 11

(a-2b)^(3)+(c-a)^(3)+(2b-c)^(3)

(2a-3b)^(3)+(4c-2a)^(3)+(3b-4c)^(3)

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)

Prove that ((a)/(b)-(b)/(c))^(3)+((b)/(c)-(c)/(a))^(3)+((c)/(a)-(a)/(b))^(3)=(3(ca-b^(2))(ab-c^(2))(bc-a^(2)))/(a^(2)b^(2)c^(2))

If a^(3)+b^(3)+c^(3)=3abc and a+b+cne0 , then

By using properties of determinants , show that : (i) {:|( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))|:}=(a-b)(b-c) (c-a) (ii) {:|( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))|:} =( a-b) (b-c)( c-a) (a+b+c)

|{:(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=abc(a-b)(b-c)(c-a)