Home
Class 9
MATHS
(5a-7b)^(3)+(9c-5a)^(3)+(7b-9c)^(3)...

`(5a-7b)^(3)+(9c-5a)^(3)+(7b-9c)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
`3(5a-7b)(9c-5a)(7b-9c)`
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.2 (D Calculate)|7 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.2|4 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.2 (B Factorise the following polynomials )|20 Videos
  • DISTANCE FORMULAS

    CALCUTTA BOOK HOUSE|Exercise Long answer|11 Videos
  • FREQUENCY DISTRIBUTIONS OF GROUPED DATA

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1 (LONG TYPE ANSWER QUESTION)|14 Videos

Similar Questions

Explore conceptually related problems

(3a-2b)^(3)+(2b-5c)^(3)+(5c-3a)^(3)

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

The number of five-digit numbers which are divisible by 3 that can be formed by using the digits 1,2,3,4,5,6,7,8 and 9 , when repetition of digits is allowed, is (a) 3^(10) (b) 4.3^(8) (c) 5.3^(8) (d) 7.3^(8)

Consider the lines (x-5)/(3)=(y-7)/(-16)=(z-3)/(7) and (x-9)/(3)=(y-13)/(8)=(z-15)/(-5) , then-

The area of triangle A B C is 20c m^2dot The coordinates of vertex A are (-5,0) and those of B are (3,0)dot The vertex C lies on the line x-y=2 . The coordinates of C are (a) (5,3) (b) (-3,-5) (-5,-7) (d) (7,5)

The algebraically second largest term in the expansion of (3-2x)^(15) at x=(4)/(3) . is (a) 5 (b) 7 (c) 9 (d) 11

If a variable tangent to the curve x^2y=c^3 makes intercepts a , b on x a n d y-a x e s , respectively, then the value of a^2b is (a) 27c^3 (b) 4/(27)c^3 (c) (27)/4c^3 (d) 4/9c^3

If a+b+c=9,a^(2)+b^(2)+c^(2)=27 and a^(3)+b^(3)+c^(3)=81 then find the value of 3abc.

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

If (5a-3b)/a= (4a+b-2c)/(a+4b-2c) = (a+2b-3c)/(4a-4c) , then show that 6a=4b=3c.