Home
Class 9
MATHS
Prove that : ((a^q)/(a^r))^p xx((a^r)/(a...

Prove that : `((a^q)/(a^r))^p xx((a^r)/(a^p))^qxx((a^p)/(a^q))^r =1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

Simply (a^(p)/a^(q))^(p+q-r).(a^(q)/a^(r ))^(q+r-p).(a^(r )/a^(p))^(r+p-q)

Prove root(p+q)(x^(p^(2))/(x^(q^(2))))xxroot(q+r)(x^(q^(2))/(x^(r^(2))))xxroot(r+p)(x^(r^(2))/(x^(p^(2))))=1

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .

If pqr=1 show that (1)/(1+p+q^(-1))+(1)/(1+q+r^(-1))+(1)/(1+r+p^(-1))=1

Prove that the points (p,p^(2)), (q,q^(2))and(r,r^(2))(pneqner) can never be collinear.

If a, b, c be respectively the sums of p, q, r terms of an A.P., show that, (a)/(p)(q-r) + (b)/(q)(r-p) +(c )/(r )(p-q) = 0

If a, b, c, be respectively the pth, qth and rth terms of a G.P., prove that a^(q-r).b^(r-p).c^(p-q) = 1

Prove that the points (p,p^(2)),(q,q^(2))and(r,r^(2))(pner) can never be collinear.

Prove that .^nP_r = ^(n-1)P_r + r^(n-1)P_(r-1)

Prove that px^(q - r) + qx^(r - p) + rx^(p - q) gt p + q + r where p,q,r are distinct number and x gt 0, x =! 1 .

CALCUTTA BOOK HOUSE-LAWS OF INDICES-EXERCISE - 6
  1. Prove that : ((a^q)/(a^r))^p xx((a^r)/(a^p))^qxx((a^p)/(a^q))^r =1

    Text Solution

    |

  2. (x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

    Text Solution

    |

  3. (x^(2^n)-y^(2^n))/(x^(2^(n-1))+y^(2^(n-1)))=

    Text Solution

    |

  4. [{(2^(-1))^(-1)}^(-1)]^(-1)=

    Text Solution

    |

  5. The value of {(x^(-5))^(2/3)}^(-3/10) is

    Text Solution

    |

  6. Which one of the following numbers is the greatest ? 2^(30),3^(24),4^(...

    Text Solution

    |

  7. Which one of the following numbers is the smallest? 3^(1/3),2^(1/2),4^...

    Text Solution

    |

  8. [{(a^(-1))^(-1)}^(-1)]^(-1)=

    Text Solution

    |

  9. If 49^x = 7^3, then x=

    Text Solution

    |

  10. If 4 xx8^x = 256, then (-x)^(-x)=

    Text Solution

    |

  11. root(5)(x^8sqrt(x^8sqrt(x^(-8))))=

    Text Solution

    |

  12. Find the value of (((8a^3)/(27x^(-3)))^(2/3)xx((64a^3)/(27x^(-3)))^(-2...

    Text Solution

    |

  13. Simplify root(3)(a^(-2)).b xx root(3)(b^(-2)).c root(3)(c^(-2)).a.

    Text Solution

    |

  14. If a^x=b,b^y =c,c^z=a, find the value of xyz.

    Text Solution

    |

  15. Calculate : 9^(-3)xx((16)^(1/4))/(6^(-2))xx((1)/(27))^(-4/3).

    Text Solution

    |

  16. If x^y=y^x, then prove that (x/y)^(x/y)=(x)^((x)/(y)-1).

    Text Solution

    |

  17. Prove that (a^(3/2)+ab)/(ab-b^3)-(sqrt(a))/(sqrt(a)-b)=(sqrt(a))/(b).

    Text Solution

    |

  18. Show that (x^(b-c))^((1)/(bc))xx(x^(c-a))^((1)/(ca))xx(x^(a-b))^((1)/(...

    Text Solution

    |

  19. Factorise : (a+b).

    Text Solution

    |

  20. Find the value of ((bc)^(b-c)(ca)^(c-a)(ab)^(a-b))/((a^(b-c)b^(c-a)c^(...

    Text Solution

    |

  21. If p=a^x,q=a^y" and "a^2=(p^yq^x)^z, then find the value of xyz.

    Text Solution

    |