Home
Class 9
MATHS
Solve : 2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x)...

Solve : `2^(4x)*4^(3x-1)=(4^(2x))/(2^(3x))`.

Text Solution

Verified by Experts

The correct Answer is:
`x =(2)/(9)`
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

Solve : 6^(2x+4)=3^(3x)*2^(x+8)

Solve : 4^(x-1)=3.2^(x)-8

Solve : ((x-1)^2(x-2)^3(x-4))/((x+1)(x+3)^4) ge0

Solve log_(4)(x-1)=log_(2)(x-3)

int (e^(4x)-2e^(3x)+5e^(x)-2)/(e^(x)+1)dx

Solve (x^3-4x)sqrt(x^2-1)=0.

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve : |x^2+4x+3|+2x+5=0

Solve (x-2)/(x+2)gt(2x-3)/(4x-1)