Home
Class 9
MATHS
If x^a=y^b=z^c " and "y^3=zx, then prove...

If `x^a=y^b=z^c " and "y^3=zx`, then prove that `b(c+a)=3ca`.

Text Solution

Verified by Experts

The correct Answer is:
`3ca`
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

If a^x=b^y=c^z" and "abc=1 , then prove that xy+yz+zx=0 .

If ax+by+c=0 " and " a'x+b'y+c'=0 , then prove that x/(bc'-b'c)=y/(ca'-c'a)=1/(ab'-a'b)

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If x : a = y : b = z : c , then prove that x^(3)/a^(2) + y^(3)/b^(2) + z^(3)/c^(2) = ((x+y+z)^(3))/((a+b+c)^(2))

If x : a = y : b = z : c , then prove that (a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)

If ay - bx/c = cx - az/b = bz - cy/a, then prove that x/a = y/b = z/c.

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

If a : b = b : c , then prove that (abc(a+b+c)^(3))/((ab+bc+ca)^(3)) = 1

If (a-b), (b-c), (c-a) are in GP then prove that (a+b+c)^2 =3(ab+bc+ca)..