Home
Class 9
MATHS
If (x^(n^2))^n = (x^(2^n))^2, then show ...

If `(x^(n^2))^n = (x^(2^n))^2`, then show that `root(n+1)(n^3)=2`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

If (a^(n^2))^(n)=(a^(2^n))^(2) show that root(n+1)(n^(3))=2

If (x^(n^3))^(n)=(x^(3^n))^(3) show that root(n+1)(n^(4))=3

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

If (1+x)^(n)=1+""^(n)C_(1)x+""^(n)C_(2)x^(2)+….+""^(n)C_(n) x^(n) show that, n*2^(n-1)=""^(n)C_(1)+2*""^(n)C_(2)+….. +n*""^(n)C_(n) .

If (1+x)^n=C_0+C_1x+C_2x^2+…..+C_nx^n .then show that C_1+2C_2+…. nC_n=n.2^(n-1) .

If f(x)= 1/x^2 ,show that f(x)-f(x+1)=(2x+1)/(x^2(x+1)^2) and hence again show that 3/(1^2. 2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+...+(2n+1)/(n^2(n+1)^2)=(n^2+2n)/((n+1)^2)

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n) , show that, (2^(2).C_(0))/(1xx2)+(2^(3).C_(1))/(2xx3)+…+(2^(n+2).C_(n))/((n+1)(n+2))=(3^(n+2)-2n-5)/((n+1)(n+2))