Home
Class 9
MATHS
If x=(sqrt(2)+1)^(-1/3), then prove that...

If `x=(sqrt(2)+1)^(-1/3)`, then prove that `(x-x^(-1))^3+3(x-x^(-1))+2=0`.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

If y=x^(1/3)-x^(-1/3) , prove that y^(3)+3y=x-(1)/(x)

If x= (7+4sqrt(3)), prove that x+1//x = 14

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x

If y=(x)/(sqrt(1+x^(2))) , prove that, x^(3)(dy)/(dx)=y^(3) .

If 2f(x-1)-f((1-x)/x)=x , then prove that 3f(x)=2(x+1)+1/(x+1) .

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

If the join of (x_1,y_1) and (x_2,y_2) makes on obtuse angle at (x_3,y_3), then prove that (x_3-x_1)(x_3-x_2)+(y_3-y_1)(y_3-y_2)<0

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If sqrt(1-x^6)+sqrt(1-y^6) = a(x^3-y^3) then prove that (dy)/(dx)= x^2/y^2sqrt((1-y^6)/(1-x^6))

If f(x) =log e (1 + x)/(1 - x) and g(x) = (3x + x^3)/(1 + 3x^2) , then prove that f[g(x)] = 3 cdot f(x) .