Home
Class 9
MATHS
If (y/z)^a (z/x)^b (x/y)^c=1, then prove...

If `(y/z)^a (z/x)^b (x/y)^c=1`, then prove that `(y/z)^((1)/(b-c))=(z/x)^((1)/(c-a))=(x/y)^((1)/(a-b))`.

Text Solution

Verified by Experts

The correct Answer is:
`(x/y)^((1)/(a-b))`
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 6|67 Videos
  • HISTOGRAM AND FREQUENCY POLYGON

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|16 Videos
  • LINEAR EQUATIONS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 4.2|77 Videos

Similar Questions

Explore conceptually related problems

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

If x^2/(by+cz)=y^2/(cz+ax)=z^2/(ax+by)=1 then show that a/(a+x)+b/(b+y)+c/(c+z)=1

If x : a = y : b = z : c , then prove that x^(3)/a^(2) + y^(3)/b^(2) + z^(3)/c^(2) = ((x+y+z)^(3))/((a+b+c)^(2))

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

If (y/z)^a.(z/x)^b.(x/y)^c=1 and a,b,c are in A.P ,show that x,y,z are in G.P.

If a,b,c are in A.P and x,y,z are in G.P then prove that a^((b-c)log_(a)^(x))xxb^((c-a)log_(b)^(y))xxc^((a-b)log_(c )^(z))=1

If y is the H.M. between x and z, prove that, (1)/(y-x) + (1)/(y-z) = (1)/(x) + (1)/(z) .