Home
Class 9
MATHS
Show that log(b)(1/(b^n)) = -n...

Show that `log_(b)(1/(b^n)) = -n`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Examples (Short-answer type questions)|1 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Examples (Long-answer type question)|25 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

If a^(4) + b^(4) = 14 a^(2)b^(2) , then show that log(a^(2) + b^(2)) = log a + log b + 2 log 2 .

If log_(40)4 = a and log_(40)5 = b , then show that log_(40)16=4(1-a-b) .

Show that log_(b)a xx log_(c )b xx log_(d)c = log_(d)a .

If a^(3-x).b^(5x) = a^(5+x).b^(3x) , then show that x log (b/a) = log a .

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

Show that ("lim")_(n vec oo)(1/(n+1)+1/(n+2)++1/(6n))=log6

If a^(2)+b^(2)=7ab show that log[1/3(a+b)]=1/2(log a+logb)

In a right-angled triangle, a and b are the lengths of sides and c is the length of hypotenuse such that c-b ne1,c+b ne 1 . Show that "log"_(c+b)a+"log"_(c-b)a=2"log"_(c+b)a."log_(c-b)a

If one root of the quadratic equation ax^2+bx+c=0 is equal to the n^th power of the other root then show that, (ac^n)^(1/(n+1))+(a^nc)^(1/(n+1))+b =0

CALCUTTA BOOK HOUSE-LOGARITHM-Exercise - 7 (Long-answer type questions)
  1. Show that log(b)(1/(b^n)) = -n

    Text Solution

    |

  2. Calculate : (i) log(2)root(4)(64root(3)(4^(-1)(8)^(-4/3)))

    Text Solution

    |

  3. Calculate : (ii) log(5)sqrt(5sqrt(5sqrt(5....................oo)))

    Text Solution

    |

  4. Calculate : (iii) log(3)(sqrt6)+log(3)(sqrt(2/3))-log(3)log(3)(9)

    Text Solution

    |

  5. Calculate : (iv) 2log(2)sqrt(2sqrt(2sqrt(2....................oo)))

    Text Solution

    |

  6. Calculate : (v) 1/6 sqrt((3log 1728)/(1+1/2 log 0.36 + 1/3log8))

    Text Solution

    |

  7. Calculate : (vi) log(2)5 xx log(6)16 xx log(5) 8 xx log(8)6.

    Text Solution

    |

  8. Simplify : (i) log(1/(sqrtx) )(y) xx log(1/(root(3)(y)))(z) xx log(1...

    Text Solution

    |

  9. Simplify : (ii) 23 log 16/15 + 17log 25/24 + 10log 81/80

    Text Solution

    |

  10. Simplify : (iii) 3log((36)/(25))+log((6)/(27))^(3)-2log((16)/(125))

    Text Solution

    |

  11. Prove that log2+16log (16/15)+12log(25/24)+7log(81/80)=1

    Text Solution

    |

  12. If log(40)4 = a and log(40)5 = b, then show that log(40)16=4(1-a-b).

    Text Solution

    |

  13. If log(6)15 = alpha, log(12)18= beta and log(25)24 = gamma, then prove...

    Text Solution

    |

  14. If log(12)18 = x and log(24)54 = y, then show that xy + 5(x-y) = 1

    Text Solution

    |

  15. If log(a)M = (logb M) xx P, then express P in terms of a and b.

    Text Solution

    |

  16. If 1/2 log(3)M + 3log(3)N = 1, then express M in terms of N.

    Text Solution

    |

  17. Prove that 1/(log2 pi) + 1/(log(6)pi) > 2.

    Text Solution

    |

  18. Prove that the value of log(10)3 lies in between 1/2 and 2/5.

    Text Solution

    |

  19. Prove that the value of log(20)3 lies in between 1/2 and 1/3.

    Text Solution

    |

  20. Prove that : (i) log(1^(1/5)+32^(1/5)+243^(1/5))=1/5(log1 + log 32 +...

    Text Solution

    |

  21. Prove that : (ii) log(1+2+3) = log1 + log2 + log3.

    Text Solution

    |