Home
Class 9
MATHS
If 1/(log(x)10) = 2/(log(0.5)10), then f...

If `1/(log_(x)10) = 2/(log_(0.5)10)`, then find the value of x.

Text Solution

Verified by Experts

The correct Answer is:
0.25
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Long-answer type questions)|49 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (MCQ)|10 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

If log_(e)2.log_(x)25 = log_(10)16.log_(e )10 , then find the value of x.

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then the value of x is

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

Solve : (1)/(log_(x)10)+2=(2)/(log_(0.5)(10))

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If log_(a)b=10 and log_(6a)(32b)=5 find the value of a

If log_(0.2) (x-1) gt log_(0.04) (x+5) then

If log_(0.2)(x-1)gt log_(0.04)(x+5) , then-

If 3+log_(10)x = 2log_(10)y , then express x in terms of y .