Home
Class 9
MATHS
If x = log(a)(bc), y = log(b)(ca), z = l...

If `x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab)`, then find `1/(x+1) + 1/(y+1) + 1/(z+1)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Long-answer type questions)|49 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (MCQ)|10 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If x=log_(a)bc,y=log_(b)ca,z=log_(c)ab, then the value of (1)/(1+x)+(1)/(1+y)+(1)/(1+z) will be

If x=1 + log_(a)(bc) , y=1 +log_(b)(ca) and z=1+ log_(c )(ab) prove that xy+yz+zx=xyz

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

Simplify : 1/(log_(ab)(abc)) + 1/(log_(bc)(abc))+1/(log_(ca)(abc))

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot