Home
Class 9
MATHS
If log(12)18 = x and log(24)54 = y, then...

If `log_(12)18 = x and log_(24)54 = y`, then show that `xy + 5(x-y) = 1`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Short-answer type questions)|10 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

If log_(6)15 = alpha, log_(12)18= beta and log_(25)24 = gamma , then prove that gamma = (5 - beta)/(2(alphabeta+alpha-2beta+1))

If log((x+y)/5) = 1/2 (log x + log y) , then show that x/y + y/x = 23 .

If log_12 18=x, log_24 4=y then the value of xy-(2x+5y)+4 is

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

If y=x^nlog_ax(a>0,a!=1), then show that log_ea(xy_1-ny)=x^n

CALCUTTA BOOK HOUSE-LOGARITHM-Exercise - 7 (Long-answer type questions)
  1. If log(40)4 = a and log(40)5 = b, then show that log(40)16=4(1-a-b).

    Text Solution

    |

  2. If log(6)15 = alpha, log(12)18= beta and log(25)24 = gamma, then prove...

    Text Solution

    |

  3. If log(12)18 = x and log(24)54 = y, then show that xy + 5(x-y) = 1

    Text Solution

    |

  4. If log(a)M = (logb M) xx P, then express P in terms of a and b.

    Text Solution

    |

  5. If 1/2 log(3)M + 3log(3)N = 1, then express M in terms of N.

    Text Solution

    |

  6. Prove that 1/(log2 pi) + 1/(log(6)pi) > 2.

    Text Solution

    |

  7. Prove that the value of log(10)3 lies in between 1/2 and 2/5.

    Text Solution

    |

  8. Prove that the value of log(20)3 lies in between 1/2 and 1/3.

    Text Solution

    |

  9. Prove that : (i) log(1^(1/5)+32^(1/5)+243^(1/5))=1/5(log1 + log 32 +...

    Text Solution

    |

  10. Prove that : (ii) log(1+2+3) = log1 + log2 + log3.

    Text Solution

    |

  11. Prove that : (iii) (yz)^(log(y/z))(zx)^(log(z/x))(xy)^(log(x/y)) = 1

    Text Solution

    |

  12. Prove that : (iv) a^(log(a^2)x) xx b^(log(b^2)y) xx c^(log(c^2)z) = ...

    Text Solution

    |

  13. Prove that : (v) p^(log(x)q) = q^(log(x)p)

    Text Solution

    |

  14. Prove that : (vi) log(a)x + log(a^2)x^(2) + log(a^3)x^(3) + ………….+ l...

    Text Solution

    |

  15. Prove that : (vii) log(sqrt a)b.log(sqrt(b))c.log(sqrt(c ))a = 8.

    Text Solution

    |

  16. Prove that : (viii) (log(a)x)/(log(ab)x) = 1+log(a)b.

    Text Solution

    |

  17. If x^(2)+y^(2)=z^(2), then prove that 1/(log(z-y)x) + 1/(log(z+y)x) = ...

    Text Solution

    |

  18. If a = log(12)m and b = log(18)m, then prove that log(3)2= (a-2b)/(b-2...

    Text Solution

    |

  19. If x^(2)+y^(2) = 6xy, then prove that 2log(x+y) = log x + logy + 3log2...

    Text Solution

    |

  20. If log((x+y)/2) = 1/3{log x + logy + log(x+y)}, then prove that (x^2)/...

    Text Solution

    |