Home
Class 9
MATHS
Prove that : (iii) (yz)^(log(y/z))(zx)...

Prove that :
(iii) `(yz)^(log(y/z))(zx)^(log(z/x))(xy)^(log(x/y)) = 1`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Short-answer type questions)|10 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

Prove that : (iv) a^(log_(a^2)x) xx b^(log_(b^2)y) xx c^(log_(c^2)z) = sqrt(xyz)

Prove that (v) 1/(log_(xy)(xyz)) + 1/(log_(yz)(xyz)) + 1/(log_(zx)(xyz)) = 2

Prove that log_(1/y)x xx log_(1/z)yxx log_(1/x)z=-1

Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .

Find the value of (yz)^(log y - log z) xx (zx)^(log z - log x) xx (xy)^(log x - log y) .

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If a,b,c are in A.P and x,y,z are in G.P then prove that a^((b-c)log_(a)^(x))xxb^((c-a)log_(b)^(y))xxc^((a-b)log_(c )^(z))=1

If x,y,z are in G.P prove that log_(a)^(x)+log_(a)^(z)=(2)/(log_(y)^(a)),[x,y,a gt0]

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

Show that a^(log_(a^2)^(x))xxb^(log_(b^2)^(y))xxc^(log_(c^2)^(z))=sqrt(xyz)

CALCUTTA BOOK HOUSE-LOGARITHM-Exercise - 7 (Long-answer type questions)
  1. Prove that : (i) log(1^(1/5)+32^(1/5)+243^(1/5))=1/5(log1 + log 32 +...

    Text Solution

    |

  2. Prove that : (ii) log(1+2+3) = log1 + log2 + log3.

    Text Solution

    |

  3. Prove that : (iii) (yz)^(log(y/z))(zx)^(log(z/x))(xy)^(log(x/y)) = 1

    Text Solution

    |

  4. Prove that : (iv) a^(log(a^2)x) xx b^(log(b^2)y) xx c^(log(c^2)z) = ...

    Text Solution

    |

  5. Prove that : (v) p^(log(x)q) = q^(log(x)p)

    Text Solution

    |

  6. Prove that : (vi) log(a)x + log(a^2)x^(2) + log(a^3)x^(3) + ………….+ l...

    Text Solution

    |

  7. Prove that : (vii) log(sqrt a)b.log(sqrt(b))c.log(sqrt(c ))a = 8.

    Text Solution

    |

  8. Prove that : (viii) (log(a)x)/(log(ab)x) = 1+log(a)b.

    Text Solution

    |

  9. If x^(2)+y^(2)=z^(2), then prove that 1/(log(z-y)x) + 1/(log(z+y)x) = ...

    Text Solution

    |

  10. If a = log(12)m and b = log(18)m, then prove that log(3)2= (a-2b)/(b-2...

    Text Solution

    |

  11. If x^(2)+y^(2) = 6xy, then prove that 2log(x+y) = log x + logy + 3log2...

    Text Solution

    |

  12. If log((x+y)/2) = 1/3{log x + logy + log(x+y)}, then prove that (x^2)/...

    Text Solution

    |

  13. If a^(2-x).b^(5x) = a^(x+3).b^(3x), then show that x log (b/a) = 1/2 l...

    Text Solution

    |

  14. If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y), then prove that (i) x...

    Text Solution

    |

  15. If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y), then prove that xyz ...

    Text Solution

    |

  16. If (logx)/(ry-qz) = (log y)/(pz - rx) = (log z)/(qx - py), then prove ...

    Text Solution

    |

  17. If y = a^(1/(1-log(a)x)) and z = a^(1/(1-log(a)y)), then show that x =...

    Text Solution

    |

  18. If x = log(c ) b + log(b)c , y=log(a)c + log(c ) a, z=log(b)a+log(a)b,...

    Text Solution

    |

  19. If a,b,c be three such positive numbers (none of them is 1) that (log(...

    Text Solution

    |

  20. If x = log(2a)a, y = log(3a)2a , z = log(4a)3a, then show that xyz + 1...

    Text Solution

    |