Home
Class 9
MATHS
If a,b,c be three such positive numbers ...

If a,b,c be three such positive numbers (none of them is 1) that `(log_(b)a log_(c )a-log_(a)a) + (log_(a)b log_(c )b-log_(b)b) + (log_(a)c log_(b)c-log_(c )c) = 0`, the prove that abc = 1.

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Short-answer type questions)|10 Videos
  • LINEAR EQUATIONS IN REAL PROBLEMS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-5|31 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos

Similar Questions

Explore conceptually related problems

If a,b,c be three distinct positive numbers, each different from 1 such that ("log"_ba"log"_ca-"log"_aa)+("log"_ab"log"_cb-"log"_b b)+("log"_ac"log"_bc-"log"_c c)=0 , then prove that abc=1

Show that log_(b)a xx log_(c )b xx log_(d)c = log_(d)a .

Prove that log_(a)bxxlog_(b)cxxlog_(c )a=1

Prove that : (viii) (log_(a)x)/(log_(ab)x) = 1+log_(a)b .

Find the values : (log_(a)b)xx(log_(b)c)xx(log_(c )d)xx(log_(d)a)

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If a = log_(3)5, b = log_(17)25 , then show that a > b.

Prove that log_(b^3)a xx log_(c^3)b xx log_(a^3)c = 1/27

If a , b , c , are positive numbers in G.P . ,then the roots of the quadratic equation (log_(e)a)x^(2)-(2log_(e)b)x+(log_(e)c)=0

Prove log_(b)b = 1

CALCUTTA BOOK HOUSE-LOGARITHM-Exercise - 7 (Long-answer type questions)
  1. If log((x+y)/2) = 1/3{log x + logy + log(x+y)}, then prove that (x^2)/...

    Text Solution

    |

  2. If a^(2-x).b^(5x) = a^(x+3).b^(3x), then show that x log (b/a) = 1/2 l...

    Text Solution

    |

  3. If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y), then prove that (i) x...

    Text Solution

    |

  4. If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y), then prove that xyz ...

    Text Solution

    |

  5. If (logx)/(ry-qz) = (log y)/(pz - rx) = (log z)/(qx - py), then prove ...

    Text Solution

    |

  6. If y = a^(1/(1-log(a)x)) and z = a^(1/(1-log(a)y)), then show that x =...

    Text Solution

    |

  7. If x = log(c ) b + log(b)c , y=log(a)c + log(c ) a, z=log(b)a+log(a)b,...

    Text Solution

    |

  8. If a,b,c be three such positive numbers (none of them is 1) that (log(...

    Text Solution

    |

  9. If x = log(2a)a, y = log(3a)2a , z = log(4a)3a, then show that xyz + 1...

    Text Solution

    |

  10. If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0, then prove that (log...

    Text Solution

    |

  11. If (a(b+c-a))/(loga) = (b(c+a-b))/(logb) = (c(a+b-c))/(logc), then pro...

    Text Solution

    |

  12. If log(a+b+c) = log a + log b + log c, then prove that log ((2a)/(1-...

    Text Solution

    |

  13. If x+y = z, then prove that 1/(log((sqrt(z)-sqrt(y)))(x)) + 1/(log((sq...

    Text Solution

    |

  14. If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-...

    Text Solution

    |

  15. Solve : (i) x^(log(10)x)= 100x.

    Text Solution

    |

  16. Solve : (ii) log(x)2log(x/16)2 = log(x/64)2.

    Text Solution

    |

  17. Solve : (log(2)(x-4)+1)/(log(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1.

    Text Solution

    |

  18. Solve : (iv) x^(log(2)a)+a^(log(2)x)=2a^(2).

    Text Solution

    |

  19. Solve : (v) 2log(2)log(2)x+log(1/2)log(2)(2sqrt(2)x) = 1.

    Text Solution

    |

  20. Solve : (vi) 6^(3-4x).4^(x+5)=8, given , log 2 = 0.3010, log 3 = 0.4...

    Text Solution

    |