`pi ` is

A

a non-algebric irrational number

B

an algebric irrational number

C

an algebric natural number

D

an algebric rational number

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    CALCUTTA BOOK HOUSE|Exercise Exercise 1.3 ( MCQ)|1 Videos
  • REAL NUMBERS

    CALCUTTA BOOK HOUSE|Exercise Long answer type questions|15 Videos
  • REAL NUMBERS

    CALCUTTA BOOK HOUSE|Exercise Long answer -type questions|10 Videos
  • PROPERTIES OF PARALLELOGRAM

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 1 (Long - answer type questions)|14 Videos
  • SECTION FORMULAS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

The value of cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7) +cos((6pi)/7)+cos((7pi)/7) is

The value of 3 sin (pi/6) "sec" (pi/3) - 4 sin (5pi/6) cot (pi/4) is-

int_(pi)^(16pi) |sin x| dx =

The value of cos(pi/15)cos(2pi/15)cos(3pi/15)cos(4pi/15)cos(5pi/15)cos(6pi/15)cos(7pi/15) is eqaul to

lim_(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 (c) pi (d) 2pi

Prove that (cos (2pi r +- (pi)/4))/(sin{q pi + (-1)^q cdot (pi)/4}) = 1 where p and q are integers.

The value of tan(pi/3)+2tan((2pi)/3)+4cot((4pi)/3)+8tan((8pi)/3) is

If f(x)=cos[pi^2]x+cos[-pi^2]x then the value of f(pi/4)+f(pi/2) is