Home
Class 9
MATHS
Prove that the points (a,bc-a^(2)),(b,ca...

Prove that the points `(a,bc-a^(2)),(b,ca-b^(2)),(c,ab-c^(2))` are collinear.

Promotional Banner

Topper's Solved these Questions

  • AREA OF TRIANGLES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-3 (Select the correct answer (MCQ) :)|4 Videos
  • AREA OF CIRCLES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-3 (Long-answer type question :)|10 Videos
  • CIRCUMFERENCE OF CIRCLES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-2|18 Videos

Similar Questions

Explore conceptually related problems

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Prove that log(a^(2)/(bc))+log(b^(2)/(ca))+log(c^(2)/(ab))=0

If a, b, c are In A.P., then show that, a^(2)(b+c), b^(2)(c+a), c^(2)(a+b) are in A.P. (ab+bc+ca != 0)

|{:(a^2,ab,ac),(ab,b^2,bc),(ca,bc,c^2):}|= ?

If D=|(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)| , then D is -

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Without expanding prove that |{:(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab):}|=0

If a + b + c = 0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Without expanding prove that [{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}]=0