Home
Class 12
MATHS
int0^(pi/2)cos^3xsinx dx...

`int_0^(pi/2)cos^3xsinx dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the Definite Integrals : int_0^(pi/2) xsinx dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate: int_0^(pi//2)cos^2x\ dx

Evaluate the following definite integrals: int_0^(pi//2)xsinx sin2x dx

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int_0^(pi//2)xsinx\ dx is equal to pi//2 b. pi//4 c. pi d. 1

int_0^(pi//2)xsinx\ dx is equal to a. pi//2 b. pi//4 c. pi d. 1