Home
Class 12
MATHS
Suppose m and n are positive integers an...

Suppose `m and n` are positive integers and let `S=sum_(k=0)^n (-1)^k 1/(k+m+1) (nC_k) and T=sum_(k=0)^m(-1)^k 1(k+n+1) (mC_k)` then `S-T` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(k=0)^n ("^nC_k)/(k+1)

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Find sum_(k=1)^(n)(1)/(k(k+1)) .

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

Find the sum sum_(k=0)^n("^nC_k)/((k+1)(k+2))

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2