Home
Class 12
MATHS
" (iii) "2.bar(93)...

" (iii) "2.bar(93)

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=bar(i)-2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+bar(k), bar(c ) = bar(i) + 2bar(j)-bar(k) , then find bar(a) xx (bar(b) xx bar(c )) and |(bar(a)xxbar(b))xxbar(c )| .

If bar(a) = bar(i) + 2bar(j)-3bar(k), bar(b) = 3bar(i)-bar(j)+2bar(k) then S.T bar(a)+bar(b), bar(a)-bar(b) are perpendicular.

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

Find the unit vector in the direction of the sum of the vectors bar(a) = 2bar(i)+ 2bar(j) - 5bar(k) and bar(b) = 2bar(i) + bar(j) + 3bar(k) .

Find the vector area and area of the parallelogram having bar(a) = bar(i) + 2bar(j) - bar(k), bar(b) = 2bar(i) -bar(j) + 2bar(k) as adjacent sides.

If bar(a) = bar(i) - 2bar(j) - 3bar(k), bar(b) = 3bar(i) -bar(j)+2bar(k) then S.T bar(a)+bar(b).bar(a)-bar(b) are perpendicular.

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

If bar(a) = 2bar(i) + 2bar(j) - 3bar(k), bar(b) = 3bar(i) - bar(j) + 2bar(k) then find the angle between 2bar(a)+bar(b) and bar(a) + 2bar(b) .