Home
Class 12
MATHS
" If "f(x)" is odd linear polynomial wit...

" If "f(x)" is odd linear polynomial with "f(1)=1," then "lim_(x rarr0)(2^(f(ln x))-2^(f(sin x)))/(x^(2)f(sin x))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is odd linear polynomial with f(1)=1 then lim_(x rarr0)(2^(f(cos x))-2^(f(sin x)))/(x^(2)f(sin x)) is

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

lim_(x rarr0^(+))(1)/(x^(ln (sin x)))

lim_(x rarr0^(+))(1)/(x^(ln (sin x)))

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

lim_(x rarr0)(sin log(1-x))/(x)

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is