Home
Class 12
MATHS
sum(r=0)^n nCr (sin rx) is equal to...

`sum_(r=0)^n nC_r (sin rx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sum_(r=0)^(n)nC_(r)sin2 pi x)/(sum_(r=0)^(n)nC_(r)cos2 pi x) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=0)^(n)nC_(r)sin rx*cos(n-r)x s equal to

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .