Home
Class 12
MATHS
(2-37)*tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(...

(2-37)*tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)(8)/(31)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(n+1)+tan^(-1)(n-1)=tan^(-1)(8/31)

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

If tan ^(-1)(x+1)+tan ^(-1)(x-1)=tan ^(-1) (8)/(31) then x=

Solve for x:tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((8)/(31))

Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

Solve tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)""(8)/(31)

If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31) ,then x is equal to

Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = tan^(-1) (8/31 ) , x gt 0

Solve for x : (i) tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)""8/31 (ii) tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)""2/3 (iii) cos(sin^(-1)x)=1/9 (iv) cos(2sin^(-1)x)=1/9