Home
Class 12
MATHS
(1)/(21)tan^(-1)(1-x)/(1+x)=sin^(-1)(2x)...

(1)/(21)tan^(-1)(1-x)/(1+x)=sin^(-1)(2x)/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

If x_(1)=2tan^(-1)((1+x)/(1-x)), x_(2)=sin^(-1)((1-x^(2))/(1+x^(2)))," where "x in (0, 1)," then "x_(1)+x_(2) is equal to

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)