Home
Class 11
MATHS
" 49.If "xy log(x+y)=1," prove that "(dy...

" 49.If "xy log(x+y)=1," prove that "(dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If xy=4, prove that x((dy)/(dx)+y^(2))=3y

If xy=4, prove that x((dy)/(dx)+y^(2))=3y

If xy=4, prove that x((dy)/(dx)+y^(2))=3y

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

(dy)/(dx)=(y^(2)-x)/(xy+y)

If xy = e^(x - y) , prove that (dy)/(dx) = (y (x - 1))/(x (y + 1))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .