Home
Class 12
MATHS
If f(x)=sin{[x+5]+{x-{x-{x}}}" for "x in...

If `f(x)=sin{[x+5]+{x-{x-{x}}}" for "x in (0,pi/4)` is invertible, where {.} and [.] represent fractional part and greatest integer functions respectively, then `f^(-1) (x)` is ::
`I. sin^(-1)x` II. `pi/2-cos^(-1)x` III. `sin^(-1){x}` IV`.cos^(-1){x}`
The correct choice is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of each of the following functions: (where {.} and [.] represents fractional part and greatest integer part functions respectively) f(x)=[1/(sin{x})]

For the function f(x) = sin (pi[x]) xx cos^(-1)([x]) , choose the correct option. (where [.] represents the greatest integer function)

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

Period of f(x)=e^(cos x)+sin pi[x] is (l.] and {.} denotes the greatest integer function and fractional part function respectively)

Let [x] be the greatest integer function f(x)=((sin((1)/(4)(pi[x])))/([x])) is

Let f(x) = ([x] - ["sin" x])/(1 - "sin" [cos x]) and g (x) = (1)/(f(x)) and [] represents the greatest integer function, then

The domain of f(x)=e^(sin(x-[x]))-[x]cos(pi/([x-1])) ,where [*] represents greatest integer function,is

The function f(x)=cos^(-1)((2[sin x|+|cos x|])/(sin^(2)x+2sin x+(11)/(4))) is defined if x belongs to (where [.] represents the greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)