Home
Class 12
MATHS
Consider the function f(x)=(log(3)x)^(4)...

Consider the function `f(x)=(log_(3)x)^(4)+12(log_(3)x)^(2)*(log_(3)((27)/(x)))` where `x in[1,729],` .If `M` be the `],[` maximum and `m` be the minimum value of `f(x)` ,then `],[`
`(A) M=81, (B) m=0, (C) M=27, (D) m=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=log_(2)[log_(3)(log_(4)(x^(2)-3x+6)}]is

The domain of the function f(x)=log_(2)[log_(3)(log_(4)(x^(2)-3x+6)}]is

The domain of the function: f(x)=log_(3) [-(log_(3) x)^(2)+5 log_3x-6]" is :"

the domain of the function f(x)=log_(3+x)(x^(2)-1) is

The domain of the function f(x)=log_(3+x)(x^(2)-1) is

The domain of the function f(x)=log_((3)/(2))log_((1)/(2))log_(pi)log_((pi)/(4))x is

Find the domain of function f(x)=log_(4)[log_(5){log_(3)(18x-x^(2)-77}]

Solve :2(log)_(3)x-4(log)_(x)27 1)

Integrate the functions (1)/(x(log x)^(m)),x>0