Home
Class 12
MATHS
C(0)+(C(1))/(2)+(C(2))/(3)+...+(C(n))/(n...

`C_(0)+(C_(1))/(2)+(C_(2))/(3)+...+(C_(n))/(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+.........(C_(n))/(n+1)=

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), show that (C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(n))/(n+2)=(n*2^(n+1)+1)/((n+1)(n+2))

(C_(0))/(1.2)+(C_(1))/(2.3)+(C_(2))/(3.4)+......*(C_(n))/((n+1)(n+2))=

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .