Home
Class 12
MATHS
Range of the function f(x)=({x})/(1+{x})...

Range of the function `f(x)=({x})/(1+{x})` is (where "{*}" denotes fractional part function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)=ln{x}+sqrt(x-2{x}) is: (where { } denotes fractional part function) (A) (1,oo) (B) (0,oo) (C) (1,oo)~I^(+) (D) None of these

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

The range of the function f(x)={(sin x-2)/(3)} is (where{.} denotes fractional part)?

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Range of the function f(x)=cos^(-1)(-{x}) where {.} is fractional part function,is:

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

Is the function f(x)={x}x>=0{-x}x<0 (where {^(*)} denotes the fractional part of (x) even ?

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)