Home
Class 12
MATHS
If x = 2 cos θ , y = sin θ and the ran...

If x = 2 cos θ , y = sin θ and the range of f ( x , y ) = `x2 − x y + y2` is [ L , M ] , then the value of the product L.M is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if x= 2cos theta ,y= 2sin theta and the range of f(x,y)=x^(2)-xy+y^(2) is [L,M] then the value of the product L.M is equal to

Find the rang of y=cos(2sin x)

If sin^(4)x+cos^(4)y+2=4sin x cos y then the value of sin x+cos y is equal to

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If x in [0. (pi)/(2)], y in [0, (pi)/(2)] and sin x + cos y =2, then the value of x+y is equal to

If x=4(l)/(1+l^(2)) and y=(2-2l^(2))/(1+l^(2)) wherel' is a parameter and range of f(x,y)=x^(2)-xy+y^(2) is[a,b ] then (a+b) is equal to

If cos x + cos y =2, then value of sin x + sin y is

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y in(0,(pi)/(2)), then the value of tan(x+y) is equal to

If the circle x^2+y^2+4x+22y+l=0 bisects the circumference of the circle x^2+y^2-2x+8y-m=0 , then l+m is equal to

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is