Home
Class 12
MATHS
Find the number of integral values of x ...

Find the number of integral values of x in the domain of `f(x) = cos^(-1) [2 - 4x^2]`. (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The domain of definition of f(x)=sin^(-1)[2-4x^(2)] is ([.] denotes the greatest integer function).