Home
Class 11
MATHS
Range of sin^(-1)x+cos^(-1)x+tan^(-1)x i...

Range of `sin^(-1)x+cos^(-1)x+tan^(-1)x` is `[a pi, b pi]` then the value of `a+b =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 4 cos^(-1)x + sin^(-1) x = pi , then the value of x is

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

If [a, b] is Range of function f(x) = sin^(-1)x + cos^(-1)x + tan^(-1)x then no. of roots of the equation 1-|x| = tan^(-1)x is [b] + k then k =

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

If A=(1)/(pi)[[sin^(-1)(x pi),tan^(-1)((x)/(pi))sin^(-1)((x)/(pi)),cot^(-1)(x pi)]] and B=(1)/(pi)[[-cos^(-1)((x)/(pi)),cot^(-1)(x pi)]] and sin^(-1)(x pi),-tan^(-1)((x)/(pi))] find the value of A-B in terms of identity matrix

sin^(-1)x+cos^(-1)x,x in[-1,1] = (A) 0 (B) pi/2 (C) pi (D) 2pi